切线角定理证明题(切线角定理)

导读 切线的判定和性质切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言: l ⊥OA,点A在⊙O上 ...

切线的判定和性质切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l ⊥OA,点A在⊙O上 ∴直线l是⊙O的切线(切线判定定理) 切线的性质定理 圆的切线垂直于经过切点半径几何语言:∵OA是⊙O的半径,直线l切⊙O于点A ∴l ⊥OA(切线性质定理) 推论1 经过圆心且垂直于切线的直径必经过切点推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵弦PB、PD切⊙O于A、C两点 ∴PA=PC,∠APO=∠CPO(切线长定理)弦切角弦切角定理 弦切角等于它所夹的弧对的圆周角几何语言:∵∠BCN所夹的是 ,∠A所对的是 ∴∠BCN=∠A推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , = ∴∠BCN=∠ACM切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.4.弦切角概念:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角. (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

免责声明:本文由用户上传,如有侵权请联系删除!