研究了统计分位数的一些性质 ,特别是它们与数学期望之间的关系 ,并归纳了统计分位数的求法 ,介绍了统计分位数的一些应用分位数有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下: 当随机变量X的分布函数为 F(x)。
实数α满足0 <α<1 时,α分位数是使P{X< xα}=F(xα)=α的数xα,上侧α分位数是使P{X >λ}=1-F(λ)=α的数λ。
双侧α分位数是使P{X<λ1}=F(λ1)=0.5α的数λ使 P{X>λ2}=1-F(λ2)=0.5α的数λ2。
2024-07-17 17:22:24 来源: 编辑:
研究了统计分位数的一些性质 ,特别是它们与数学期望之间的关系 ,并归纳了统计分位数的求法 ,介绍了统计分位数的一些应用分位数有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下: 当随机变量X的分布函数为 F(x)。
实数α满足0 <α<1 时,α分位数是使P{X< xα}=F(xα)=α的数xα,上侧α分位数是使P{X >λ}=1-F(λ)=α的数λ。
双侧α分位数是使P{X<λ1}=F(λ1)=0.5α的数λ使 P{X>λ2}=1-F(λ2)=0.5α的数λ2。