二次函数知识点总结(二次函数知识点)

导读 二次函数 定义与定义表达式编辑本段  一般地,自变量x和因变量y之间存在如下关系:  y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二...

二次函数 定义与定义表达式编辑本段  一般地,自变量x和因变量y之间存在如下关系:  y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

  重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。

IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。

)  二次函数表达式的右边通常为二次。

  x是自变量,y是x的二次函数 二次函数的三种表达式编辑本段  ①一般式:y=ax2+bx+c(a,b,c为常数,a≠0)  ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)2+k  ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1 2)(x-x22)  以上3种形式可进行如下转化:  ①一般式和顶点式的关系  对于二次函数y=ax2+bx+c,其顶点坐标为[(-b/2a),(4ac-b2)/4a],即  h=-b/2a=(x1 +x2)/2  k=(4ac-b2)/4a  ②一般式和交点式的关系  x1,x2=[-b±√(b2_4ac)]/2a(即一元二次方程求根公式) 二次函数的图像编辑本段  在平面直角坐标系中作出二次函数y=x2的图像,  可以看出,二次函数的图像是一条永无止境的抛物线。

抛物线的性质编辑本段  1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)  2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ]  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号  当a与b异号时(即ab<0),对称轴在y轴右侧。

因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,若要b/2a小于0,则a、b要异号  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)  6.抛物线与x轴交点个数  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x= -b±√b2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)  当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0)  7.定义域:R   值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞)   奇偶性:偶函数   周期性:无   解析式:   ①y=ax2+bx+c[一般式]   ⑴a≠0   ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;   ⑶极值点:(-b/2a,(4ac-b2)/4a);   ⑷Δ=b2-4ac,   Δ>0,图象与x轴交于两点:   ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);   Δ=0,图象与x轴交于一点:   (-b/2a,0);   Δ<0,图象与x轴无交点;   ②y=a(x-h)2+t[配方式]   此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段   特别地,二次函数(以下称函数)y=ax2+bx+c,  当y=0时,二次函数为关于x的一元二次方程(以下称方程),  即ax2+bx+c=0  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式   y=ax2   y=ax2+K  y=a(x-h)2   y=a(x-h)2+k   y=ax2+bx+c     顶点坐标   (0,0)   (0,K)  (h,0)   (h,k)   (-b/2a,[4ac-b2]/4a)     对 称 轴   x=0   x=0  x=h   x=h   x=-b/2a     当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到,  当h<0时,则向左平行移动|h|个单位得到.  当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;  当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;  因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.   2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a).   3.抛物线y=ax2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.   4.抛物线y=ax2+bx+c的图象与坐标轴的交点:   (1)图象与y轴一定相交,交点坐标为(0,c);   (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)  当△=0.图象与x轴只有一个交点;   当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.   5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a.   顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.   6.用待定系数法求二次函数的解析式   (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:  y=ax2+bx+c(a≠0).   (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).   (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).   7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现. 中考典例编辑本段   1.(北京西城区)抛物线y=x2-2x+1的对称轴是( )   (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2   考点:二次函数y=ax2+bx+c的对称轴.   评析:因为抛物线y=ax2+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.   另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.   2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:   甲:对称轴是直线x=4;   乙:与x轴两个交点的横坐标都是整数;   丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.   请你写出满足上述全部特点的一个二次函数解析式: .   考点:二次函数y=ax2+bx+c的求法   评析:设所求解析式为y=a(x-x1)(x-x2),且x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为顶点式a(x+x1)(x+x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2  ∵抛物线对称轴是直线x=4,  ∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,  即:x2- x1= ②   ①②两式相加减,可得:x2=4+,x1=4-   ∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。

  当ax1x2=±1时,x2=7,x1=1,a=±   当ax1x2=±3时,x2=5,x1=3,a=±   因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)   即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3   说明:本题中,只要填出一个解析式即可,也可用猜测验证法。

例如:猜测与x轴交点为A(5,0),B(3,0)。

再由题设条件求出a,看C是否整数。

若是,则猜测得以验证,填上即可。

  5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )   A、6 B、4 C、3 D、1   考点:二次函数y=ax2+bx+c的图象及性质的运用。

  评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。

那么△ABC的面积为3,故应选C。

  图13-28   6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。

y值越大,表示接受能力越强。

  (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?   (2)第10分时,学生的接受能力是什么?   (3)第几分时,学生的接受能力最强?   考点:二次函数y=ax2+bx+c的性质。

  评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x>13时,y随x的增大而减小。

而该函数自变量的范围为:0<x3<0,所以两个范围应为0<x<13;13<x<30。

将x=10代入,求函数值即可。

由顶点解析式可知在第13分钟时接受能力为最强。

解题过程如下:   解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9   所以,当0<x<13时,学生的接受能力逐步增强。

  当13<x<30时,学生的接受能力逐步下降。

  (2)当x=10时,y=-0.1(10-13)2+59.9=59。

  第10分时,学生的接受能力为59。

  (3)x=13时,y取得最大值,   所以,在第13分时,学生的接受能力最强。

  9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:   (1)当销售单价定为每千克55元时,计算月销售量和月销售利润;   (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);   (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?   解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克), 所以月销售利润为:(55–40)×450=6750(元).   (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克 而每千克的销售利润是:(x–40)元,所以月销售利润为:   y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),   ∴y与x的函数解析式为:y =–10x2+1400x–40000.   (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,   即:x2–140x+4800=0,   解得:x1=60,x2=80.   当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:  40×400=16000(元);   当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:  40×200=8000(元);   由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.  19.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值 元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元).   (1)求y关于x的函数关系式;   (2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?   20.下图1为义乌市2005年,2006年城镇居民人均可支配收入构成条形统计图。

图2为义乌市2006年城镇居民人均可支配收入构成扇形统计图,城镇居民个人均可支配收入由工薪收入、经营净收入、财产性收入、转移性收入四部分组成。

请根据图中提供的信息回答下列问题:   (1)2005年义乌市城镇居民人均工薪收入为________元,2006年义乌市城镇居民人均可支配收入为_______元;   (2)在上图2的扇形统计图中,扇形区域A表示2006年的哪一部分收入:__________.   (3)求义乌市2005年到2006年城镇居民人远亲中支配收入的增长率(精确到0.1℅)  19.解:(1) (x为正整数)  (2)2006年全市人均生产产值= (元)(2分)   我市2006年人均生产产值已成功跨越6000美元大关(1分)。

免责声明:本文由用户上传,如有侵权请联系删除!